
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Online Container Caching for
IoT Data Processing in Serverless Edge Computing

Guopeng Li, Haisheng Tan, Senior Member, IEEE, Chi Zhang, Xuan Zhang, Zhenhua Han, Guoliang Chen

Abstract—Serverless edge computing is an efficient way to
execute event-driven, short-duration, and bursty IoT data pro-
cessing tasks on resource-limited edge servers, using on-demand
resource allocation and dynamic auto-scaling. In this paradigm,
function requests are handled in virtualized environments, e.g.,
containers. When a function request arrives online, if there is no
container in memory to execute it, the serverless platform will
initialize such a container with non-negligible latency, known as
cold start. Otherwise, it results in a warm start with no latency
in previous studies. However, based on our experiments, we find
there is a remarkable third case called Late-Warm, i.e., when
a request arrives during the container initializing, its latency is
less than a cold start but not zero. In this paper, we study online
container caching in serverless edge computing to minimize
the total latency with Late-Warm and other practical issues
considered. We propose OnCoLa, a novel 𝑂 (𝑇𝑐𝐾)-competitive
algorithm supporting request relaying on multiple edge servers.
Here, 𝑇𝑐 and 𝐾 are the maximum container cold start latency and
the memory size, respectively. Extensive simulations on two real-
world traces demonstrate that OnCoLa consistently outperforms
the state-of-the-art container caching algorithms and reduces the
latency by 23.33%. Experiments on Raspberry Pi and Jetson
Nano show that OnCoLa reduces latency by up to 21.38%
compared with the representative lightweight policy.

Index Terms—Serverless computing, cache, data processing.

I. INTRODUCTION

RECENTLY, the Internet-of-Things (IoT) has enabled new
applications for many domains, including healthcare [2],

public transport [3], and the energy industry [4]. These appli-
cations fundamentally rely on the processing of IoT data from
IoT devices like sensors, cameras, and vehicles [5]. However,
uploading IoT data to the remote cloud faces challenges
like privacy leaks, network congestion, and high latency.
As IoT data is often generated far from the cloud, edge
computing is a natural alternative, which executes IoT data
processing tasks (IDPTs) on edge servers close to the data
sources [6]. IDPTs are event-driven, short-duration, and have
bursty workloads [7]. When executing IDPTs on the resource
(CPU, memory)-limited edge servers, it is challenging to

This work was supported in part by the National Key R&D Program
of China under Grant 2021ZD0110400, NSFC under Grant 62132009,
and the Fundamental Research Funds for the Central Universities at
China. A preliminary version with part of the results has been ac-
cepted by the 2024 IEEE 40th International Conference on Data Engineer-
ing (ICDE), Utrecht, Netherlands [1]. Guopeng Li, Haisheng Tan, Xuan
Zhang, and Guoliang Chen are with University of Science and Technol-
ogy of China, Hefei 230026, China (e-mail: guopengli@mail.ustc.edu.cn;
hstan@ustc.edu.cn; xuanzhang@mail.ustc.edu.cn; glchen@ustc.edu.cn), Chi
Zhang is with Hefei University of Technology, Hefei 230009, China (e-
mail: zhangchi@hfut.edu.cn), Zhenhua Han is with Microsoft Research Asia,
Shanghai 200232, China (e-mail: Zhenhua.Han@microsoft.com). Correspond-
ing author: Haisheng Tan.

handle the task bursts and prevent resource waste during idle
periods between tasks. Adopting the serverless paradigm [8],
which offers on-demand resource allocation and dynamic auto-
scale policy, is a promising approach for executing IDPTs on
resource-limited edge servers, which can be called serverless
edge computing [9].

Serverless computing, also known as Function-as-a-Service
(FaaS) has attracted attention from various communities,
such as system [10]–[14], networking [15]–[17], and archi-
tecture [18]–[20]. In FaaS, developers implement tasks as
functions, and execute functions within a virtualized envi-
ronment, such as a container. Before executing, a container
will go through an initialization, which involves launching
the container, preparing the program language runtime, and
installing necessary libraries. This initialization is known as
a cold start with non-negligible latency. If the container is
already initialized in memory before the function request, it
results in a warm start with no latency. One way to mitigate
cold starts is to cache initialized containers in memory so that
they are warm for future function requests. However, caching
containers in memory is costly, as about 50% of containers
need more than 100 MB of memory [21]. Therefore, we need
to investigate the container caching policy that decides which
containers should be cached in memory to make full use of
the limited memory and reduce the latency. Container caching
is a fundamental problem in serverless computing, which is
non-trivial due to variable memory demands, diverse cold start
latencies, and skewed function popularity [21]. When taking
into account the practical issues in edge computing, we reveal
extra challenges as follows.

Late-Warm. In existing serverless edge computing stud-
ies [22]–[25], a function request either experiences cold start
latency or incurs no extra latency (warm start). However, as
shown in Fig. I, when a function request arrives during the
corresponding container initialization, which strictly is neither
a cold nor a warm start, we call this case Late-Warm, such
as the requests for 𝑓6 at 𝑇2, 𝑇3, and 𝑇4. Late-Warm introduces
a latency that is non-zero and shorter than a cold start. As
shown in Fig. 2, this non-negligible latency makes the optimal
policy (i.e., Bélády [26]) for traditional online caching cannot
be applied directly here. Moreover, our experiments on edge
devices show that Late-Warm is more prevalent as the longer
cold latency due to limited resources increases its occurrences.

Memory Sensitivity. Edge servers are resource-limited,
e.g., Raspberry Pi 4B (PI4B) and Jetson Nano (Nano) have
CPU clock rates no higher than 1.5 GHz and main memory
no more than 8 GB. Therefore, as shown in our experiments
in Example 1, we observed significant variations in cold start

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Function

Requests

Sequence 𝑇0 𝑇1 𝑇3 𝑇4 𝑇5 𝑇6

𝑓2 𝑓5𝑓6 𝑓6𝑓6𝑓6𝑓6 Initialized Container

Time

Warm Start

𝑻𝟎

Memory

𝒄𝟏 𝒄𝟓

𝑇2

𝒇𝟐

Time

𝑻𝟏
𝒇𝟔

Cold Start 𝒄𝟔

𝑻𝟐~𝑻𝟒
𝒇𝟔

Late-Warm

𝑻𝟓
𝒇𝟔

Warm Start

𝑻𝟔
𝒇𝟓

𝒄𝟓, initialized𝒄𝟐, initialized 𝒄𝟔, non-exist 𝒄𝟔, initializing 𝒄𝟔, initialized

Function

Container

Outcome Warm Start

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

Memory

𝒄𝟏 𝒄𝟓

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝟔

𝒄𝟏 𝒄𝟓

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝟔

Memory

𝒄𝟔

𝒄𝟏 𝒄𝟓

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝟔

Memory

𝒄𝟔

𝒄𝟏 𝒄𝟓

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝟔

Memory

Initializing Container

Fig. 1. Late-Warm in serverless edge computing. 𝑐𝑖 represents the container used to execute 𝑓𝑖 , for 1 ≤ 𝑖 ≤ 6. Before 𝑇0, containers 𝑐1 ∼ 𝑐5 have been
initialized in memory. 𝑐6 starts initializing (i.e., cold start) at 𝑇1 until 𝑇5, and therefore the outcomes of requests arriving at 𝑇2,𝑇3, and 𝑇4 are all Late-Warm.

Memory

𝒄𝟏 𝒄𝟐

𝑓3 𝑓2 𝑓1𝑓1𝑓1𝑓3𝑓3𝑓3𝑓3

4 3 2 1 0 0 4 3 2 0

Warm

Time𝑇4 𝑇5 𝑇7 𝑇8𝑇6𝑇3𝑇2𝑇1𝑇0

Late-Warm

𝑻𝟎, Terminate 𝒄𝟏
Bélády

Policy
Latency = 19

Latency = 14

𝑻𝟎, Terminate 𝒄𝟐

Cold

Start
Late-Warm Warm

4 3 2 1 0 4 0 0 0 0

Cold

Start
Late-Warm

Cold

Start
Warm Warm

𝑻𝟎, Memory

𝒄𝟏 𝒄𝟐

𝑻𝟎, Memory

𝒄𝟏 𝒄𝟐

𝑻𝟓
Terminate 𝒄𝟑

𝑻𝟒, Memory

𝒄𝟏 𝒄𝟑

𝑻𝟒, Memory

𝒄𝟑 𝒄𝟐

𝑓2

𝑇9

Warm

𝑻𝟔
Terminate 𝒄𝟑

Cold

Start

Warm

𝑻𝟗, Memory

𝒄𝟏 𝒄𝟐

𝑻𝟗, Memory

𝒄𝟏 𝒄𝟐

Initialized

container

Terminated

container

Initializing

container

Function

𝒄𝟏

Fig. 2. Bélády is latency-suboptimal in online caching with Late-Warm. In
this example, the size of memory is 2, for any container, the memory footprint
is 1, and the cold latency is 4, that is, the initialization starts at 𝑇𝑖 and finishes
at 𝑇𝑖+4. At 𝑇0, since 𝑐3 requires memory for initialization, one must choose
to terminate either 𝑐1 or 𝑐2. Bélády terminates 𝑐1. The result shows that
terminating 𝑐1 leads to a latency of 19, while terminating 𝑐2 results in a
latency of 14. Therefore, Bélády is latency-suboptimal.

latency and function execution time with different memory
usage percentages. Additionally, a container’s memory foot-
print changes significantly depending on whether it is actively
executing, as described in Sec. III and Table II. Unlike tradi-
tional online caching, which mainly focuses on files with fixed
retrieval latency and memory footprint [27]–[29], this paper
focuses on container caching, where cold latency, execution
time, and container memory footprint are much more dynamic.
These dynamics in latency and container memory footprint
introduce new challenges for container caching. Moreover,
with a high memory usage percentage, function requests might
even result in failures.1 As illustrated in Fig. 3, the latency and
request failure rate might sharply increase at some specific
memory usage in both PI4B and Nano, further inspiring us to
avoid such a sudden increase adaptively when designing the
container caching policy.

Example 1 (Memory Sensitivity). Fig. 3 shows our exper-
imental results on PI4B with 1GB memory and Nano with

1If there is insufficient memory to initialize a container for a new function
on any server and terminating executing containers is not permitted, or if the
function’s execution memory requirements exceed available memory, this will
result in a request failure.

4GB memory. We invoke a matrix multiplication function on
PI4B and an image classification function on Nano. When
memory usage percentage changes, the cold start latency and
the function execution time can vary by up to 5.29× and
9.31×, respectively. Moreover, the latency and request failure
have a sharp increase when memory usage reaches nearly 80%
and 70% for PI4B and Nano, respectively. We also conducted
experiments on the influence of CPU usage on latency and
failure rate, and found it much less sensitive compared with
the factor of memory usage. Due to limited space, we omit
the result here.

Cold Latency Execution Time Request Failure Rate

20 30 40 50 60 70 80 90
Resources Usage (%)

1

2

3

4

5

La
te

nc
y

(s
)

cold latency
5.29×

0

10

20

30

40

50

60

70

R
eq

ue
st

 F
ai

lu
re

 R
at

e
(%

)

(a) Matrix multiplication on PI4B

50 60 70 80 90
Resources Usage (%)

0

10

20

30

40

50

60

La
te

nc
y

(s
)

execution time
9.31×

0

10

20

30

40

50

60

70

R
eq

ue
st

 F
ai

lu
re

 R
at

e
(%

)

(b) Image classification on Nano
Fig. 3. The variation of cold start latency, function execution time, and request
failure rate with the change of Memory usage percentage.

Request Relaying. In serverless edge computing, function
requests arrive at each edge server in a distributed manner.
When an infrequent function request arrives on one edge as
a cold start, a more cost-effective approach might be to not
initialize its container locally, but to send it to another server
that has the container with additional relay latency, which is
called request relaying. This becomes especially challenging
with the additional latency from Late-Warm, the variable cold
latency and execution time caused by Memory Sensitivity and
the relay latency between servers, elevating the difficulty of
decision-making in the online container caching algorithm.

To address the above practical challenges in serverless edge
computing for executing IoT data processing tasks, we study
the online container caching problem with Late-Warm on mul-
tiple edge servers. We propose a novel online algorithm named
OnCoLa to minimize the total latency of function requests. In
OnCoLa, we assign a priority to each container to indicate its
cost-effectiveness for reducing the total latency. We implement

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

and evaluate it with small-scale testbed experiments using
common IoT data processing tasks and large-scale simulations
based on real-world traces. Our technical contributions are
summarized as follows:
• Under a novel model taking Late-Warm and other practical

issues into account in executing IoT data processing tasks
on edge servers, we investigate the online container caching
problem on multiple edge servers to minimize the total
latency. We analyze its hardness and prove the lower bound
of the competitive ratio as Ω(𝑇𝑐𝐾) , where 𝑇𝑐 is the
maximum cold start latency, and 𝐾 is the memory size.
To the best of our knowledge, we are the first to explicitly
consider Late-Warm and the relay latency for the online
container caching problem (in Sec. III).

• We propose an Online Container Caching policy with Late-
Warm, named OnCoLa, taking Late-Warm, memory sensi-
tivity, and request relaying into account. We further theoret-
ically prove its competitive ratio as 𝑂 (𝑇𝑐𝐾) (in Sec. IV).

• Through extensive large-scale simulations with AliFC trace
and Azure trace, we demonstrate that OnCoLa outperforms
the SOTA solution GD [30] and reduces the latency by
up to 23.33%. We implement OnCoLa on PI4B and Nano
with OpenFaaS and faasd, and evaluate it under workloads
consisting of common IoT data processing tasks. The results
demonstrate that OnCoLa significantly reduces latency by
21.38% and reduces request failure rate by up to 2.3×
compared with the commonly used fixed-duration container
caching policy (in Sec. V and Sec. VI).

II. BACKGROUND

A. IoT Data Processing in Serverless Edge Computing

Serverless computing offers a Function-as-a-Service (FaaS)
abstraction, enabling tasks to be deployed as serverless func-
tions that are invoked by events such as request arrivals or
new data production. These serverless function requests are
managed in virtualized environments like containers [31]. The
event-driven execution paradigm and dynamically auto-scaling
resource management policy of serverless computing motivate
us to apply serverless to edge computing for executing event-
driven and bursty IoT data processing tasks [9], where data is
processed on edge servers near the source, reducing latency
and bandwidth usage. Fig. 4 illustrates the components for exe-
cuting IoT data processing tasks in serverless edge computing,
including IoT devices like sensors, cameras, and smartphones,
and edge servers PI4B and Nano. In this setup, when an
IoT device generates a data processing event, it triggers a
request for a specific function (such as Object Detection, text-
to-speech, etc.). Upon receiving this request, PI4B or Nano
executes the function by initializing a container.
B. Cold Start

Cold start affects serverless computing both in the cloud
and at the edge, introducing additional latency. As an example,
Fig. 5 illustrates the latency composition for a request to an
image classification function executed on a Jetson Nano. The
cold start process typically involves stages such as checking
for an available initialized container, starting the container
instance, preparing the language runtime environment, and

Data

Analysis

Encryption

& decryption

Speech

To Text

Audio

Translation

Text To

Speech

Object

Detection

Request Response

Request Response

Image

Classification

Dog Container

Runtime

Conta-

iners

Hard

ware

CPU: 4-core ARM A57

GPU: 128-core Maxwell

Memory: 4GB

Container

Runtime

Conta-

iners

Hard

ware
CPU: 4-core ARM A72

Memory: 1GB

Raspberry Pi 4B (PI4B)

NVIDIA Jetson Nano (Nano)

Serverless

Platform

Serverless

Platform

Fig. 4. IoT Data Processing in serverless edge computing.

importing necessary libraries. In the illustrated case, the extra
latency from the cold start is 2.75 seconds, compared to
a function execution time of 6.45 seconds. This additional
cold start latency accounts for 29.89% of the total end-to-
end latency. Such latency is critical in applications requiring
low latency, like real-time data processing and interactive ser-
vices, potentially degrading performance and user experience.
Consequently, optimizing serverless computing necessitates
cold start mitigation. There are two primary strategies for
this: reducing the frequency of cold starts and decreasing the
duration of individual cold starts, for instance, by accelerating
container initialization. In this paper, we focus on the first.
These two methods are orthogonal and complementary in
achieving the overall goal of cold start mitigation.

OpenFaaS Check Container Pool
Container Start

Import

Libraries
Function Execution

0.25s0.93s 1.57s 6.45s

2.75s

Fig. 5. The composition of latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We provide the system model and problem formulation in
this section. Commonly used symbols are listed in Table I.

A. Model

System. Motivated by serverless edge computing, this study
focuses on a system comprising multiple edge servers.
Specifically, the system consists of 𝑁 edge servers, S =

{𝑠1, 𝑠2, . . . , 𝑠𝑁 }, where the memory size of each server is
𝐾𝑖 , 𝑖 = 1, 2, . . . , 𝑁 . We set 𝐾 = max𝑖 𝐾𝑖 . The request of
function 𝑓𝑖 ∈ F (F = { 𝑓1, 𝑓2, . . . }) is assumed to execute in
its own container 𝑐 𝑓𝑖 . Whenever a function 𝑓𝑖 is requested, its
corresponding container 𝑐 𝑓𝑖 needs to be initialized to execute
the function. We use 𝑡𝑟𝑒 to denote the relay latency, defined as
the time required to relay a request from the requested edge
server to another.
Container. A container in memory can be in one of three
states at any time: initializing, initialized, or executing. An
initializing container is a container that has not finished its
initialization and cannot execute any functions. An initialized
container is a container that has been initialized, but has no

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

function requests at the moment. It can also be called an
idle container. An executing container is a container that is
executing a function.2 A container that is initialized or exe-
cutes a function is called a warm container, which represents
an already initialized environment for the requests of the
same function. Generally, we use 𝑧 𝑓𝑖 to represent the memory
footprint of container 𝑐 𝑓𝑖 . Specifically, 𝑧𝑒

𝑓𝑖
denotes the memory

footprint when the container is in the executing state, and 𝑧𝑝
𝑓𝑖

represents the footprint when the container is in the initializing
or initialized state. For convenience, we use 𝑐 𝑓 to represent
𝑐 𝑓𝑖 , 𝑧 𝑓 to denote 𝑧 𝑓𝑖 , 𝑧

𝑒
𝑓

to denote 𝑧𝑒
𝑓𝑖

, and 𝑧𝑝
𝑓

to denote 𝑧𝑝
𝑓𝑖

.
The sum of the container sizes on each edge server must not
exceed its memory capacity.

TABLE I
LIST OF SYMBOLS

Notation Description

𝑐 𝑓 The corresponding container to execute function 𝑓 .
𝑡𝑒
𝑓

The function execution time of 𝑓 .
𝑡𝑐
𝑓

The latency for initializing container 𝑐 𝑓 .
𝑡𝑟𝑒 The latency for relaying one request from one edge

server to another edge server.
𝑝𝑐 𝑓 The priority of container 𝑐 𝑓 .

Request. Let R = (𝑟1, 𝑟2, . . .) be the sequence of function
requests. We represent a request as a pair (𝑠, 𝑓) ∈ S × F ,
meaning the request of function 𝑓 on edge server 𝑠. All
function requests arrive in an online manner, that is, we can
not get future information and we make no assumptions on the
arrival patterns. We divide time into slots of unit size. Multiple
different kinds of function requests might come within one
time slot, however, each function 𝑓 ∈ F can be requested at
most once in each slot. We use 𝑡𝑒

𝑓
to indicate the execution time

of 𝑓 , and 𝑡𝑐
𝑓

to indicate the latency for initializing the container
𝑐 𝑓 (i.e., cold latency), and 𝑡𝑒

𝑓
and 𝑡𝑐

𝑓
vary with memory usage.

We set 𝑇𝑐 = max𝑖 𝑡𝑐𝑓𝑖 . As shown in Fig. III-A, there are four
different outcomes for processing request 𝑟 := (𝑠, 𝑓) based on
the state of 𝑐 𝑓 , and resulting in different latency:

• Cold Start (e.g., 𝑟2): If 𝑐 𝑓 is not in the memory of 𝑠,
one option is to initialize a new container on 𝑠, known
as Cold Start. If there is insufficient memory available,
containers will be terminated3. The latency for processing
request 𝑟 consists of the execution time of function 𝑓 and
the initialization latency, represented as 𝑡𝑒

𝑓
+ 𝑡𝑐

𝑓
.

• Late-Warm (e.g., 𝑟4): If the state of 𝑐 𝑓 in the memory of edge
server 𝑠 is initializing, we call it Late-Warm. The latency for
processing request 𝑟 includes the execution time of function
𝑓 and the waiting time for 𝑐 𝑓 to finish initializing, denoted
as 𝑡𝑒

𝑓
+ 𝑡𝑞

𝑓
, where 0 < 𝑡𝑞

𝑓
< 𝑡𝑐

𝑓
.

• Warm Start (e.g., 𝑟3): When there is an already initialized
container 𝑐 𝑓 for the request of 𝑓 , it is known as a Warm
Start. The latency for processing this request is the execution
time of 𝑓 , 𝑡𝑒

𝑓
.

2In serverless computing, multiple concurrent requests of the same function
can be handled in a single container or by initializing multiple containers,
depending on the auto-scaling policy of the serverless platform.

3If all the containers are executing and not allowed to terminate, resulting
in a request failure.

• Relay (e.g., 𝑟1): If 𝑐 𝑓 does not exist in the memory of edge
server 𝑠, but there is an initialized 𝑐 𝑓 on another edge server,
𝑠′, one option is to relay request 𝑟 to 𝑠′ for processing,
referred to as Relay. The latency for processing 𝑟 would
then be the relay latency and the time to execute function
𝑓 , denoted as 𝑡𝑟𝑒 + 𝑡𝑒

𝑓
.

Relayer

𝒔𝟏

.

Initialized container Terminated container

𝒔𝟐 𝒔𝟑 𝒔𝟒

𝒓𝟏 = (𝒔𝟏, 𝒇𝟓)

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟑 𝒄𝟕

𝒓𝟐 = (𝒔𝟐, 𝒇𝟔) 𝒓𝟑 = (𝒔𝟑, 𝒇𝟑) 𝒓𝟒 = (𝒔𝟒, 𝒇𝟕)

Relay Terminate

&Cold Start

Warm Start Late-Warm

𝒄𝟑

𝒄𝟔

Initializing container

𝒄𝟓𝒄𝟐

Relay 𝒓𝟏 from 𝒔𝟏 to 𝒔𝟒
with relay latency

𝒔𝑵

𝒄𝟏𝒄𝟑 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟑 𝒄𝟑 𝒄𝟓

Fig. 6. Container caching on edge servers with 4 different cases: Relay,
Terminate & Cold Start, Warm Start and Late-Warm.

B. Problem Formulation

The objective of this problem is to minimize the total latency
for processing all function requests. Let 𝑡𝑟 :=(𝑠, 𝑓) denote the
latency incurred by processing the request 𝑟 := (𝑠, 𝑓).

Problem P:

minimize
∑︁
𝑟∈R

𝑡𝑟 :=(𝑠, 𝑓)

𝑠.𝑡.
∑︁

𝑐 𝑓 in server 𝑠𝑖

𝑧 𝑓 ≤ 𝐾𝑖 ∀𝑖 ∈ {1, 2, . . . , 𝑁}
(1)

For the hardness of Problem P, its simplified version, where
each container is of uniform size, has been proved NP-
Complete [32]. Further, we have the following theorem.

Theorem 1. All online algorithms for Problem P have a
competitive ratio lower bound as Ω(𝑇𝑐𝐾).

Proof. We use pure and bursty requests. A pure request for
𝑓𝑖 on server 𝑠 has 𝑇𝑐 + 1 slots, with 𝑓𝑖 on 𝑠 in the first slot
and no requests in the rest. A bursty has 2𝑇𝑐 slots, with 𝑓𝑖
on 𝑠 in the first 𝑇𝑐 slots and no requests in the rest. The
latency is 𝑡𝑒

𝑓
for warm pure requests, 𝑡𝑒

𝑓
+ 𝑡𝑐

𝑓
for cold pure

requests, 𝑇𝑐𝑡𝑒𝑓 for warm bursty requests, and 𝑇𝑐𝑡𝑒𝑓 + 𝑡
𝑐
𝑓
(𝑡𝑐
𝑓
+1)/2

for cold bursty requests. Let 𝑟 𝑝
𝑖

and 𝑟𝑏
𝑖

be pure and bursty
requests for 𝑓𝑖 . Assume 𝐾+1 different functions are requested.
Let A be an online algorithm for problem P. We assume that
the containers of functions 𝑓1, . . . , 𝑓𝐾 , i.e., 𝑐 𝑓1 , . . . , 𝑐 𝑓𝐾 have
been initialized initially. The constructor first pure requests
𝑟
𝑝

𝐾+1, which terminates one container from 𝑐 𝑓1 , . . . , 𝑐 𝑓𝐾 . Then
it repeats bursty requests for 𝐾 times. The 𝑗-th bursty request
is 𝑟𝑏

𝑖 𝑗
, where 𝑐 𝑓 𝑗 is the terminated container before the request.

So, for A , each bursty request has latency 𝑇𝑐𝑡𝑒𝑓 + 𝑡
𝑐
𝑓
(𝑡𝑐
𝑓
+1)/2,

and the total latency of A is 𝑡𝑐
𝑓
+ 𝑡𝑒

𝑓
+ 𝐾 (𝑇𝑐𝑡𝑒𝑓 + 𝑡

𝑐
𝑓
(𝑡𝑐
𝑓
+ 1)/2),

the total cold latency is 𝑡𝑐
𝑓
+ 𝐾𝑡𝑐

𝑓
(𝑡𝑐
𝑓
+ 1)/2. However, for the

optimal algorithm, the total latency is 𝑡𝑐
𝑓
+ 𝑡𝑒

𝑓
+ 𝐾𝑇𝑐𝑡𝑒𝑓 , and

the total cold latency is 𝑡𝑐
𝑓
. Therefore, the competitive ratio is

bounded by Ω(𝑇𝑐𝐾).
□

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

IV. ONLINE ALGORITHM

In this section, we introduce OnCoLa, an online con-
tainer caching algorithm that supports relaying on multiple
edge servers with Late-Warm. OnCoLa tackles the challenges
of Late-Warm, Memory Sensitivity, and Request Relaying
through three key components. First, it employs a priority
to quantitatively assess the cost-effectiveness of caching each
container while considering Late-Warm, guiding termination
decisions when memory is insufficient. Second, an Admis-
sion Policy determines whether to initiate a new container
at the requested edge server locally or relay the request
to another server that already has an initialized container.
Third, OnCoLa incorporates a Memory Adjustment method
to dynamically manage memory thresholds, preventing sudden
increases in latency and request failures. The subsequent
subsections detail the framework (Sec. IV-A), the priority
calculation (Sec. IV-B), the admission policy (Sec. IV-C), and
the memory adjustment method (Sec. IV-D).

A. Online Container Caching on Multiple edge servers

In the online container caching problem on multiple edge
servers, the key challenges involve relaying or locally pro-
cessing requests and selecting containers to terminate under
memory insufficiency. In OnCoLa, we assign a priority, 𝑝𝑐 𝑓 ,
to each container 𝑐 𝑓 , to represent its cost-effectiveness in
reducing total latency.

Alg. 1 shows the details of OnCoLa, for an online arriving
function request 𝑟 := (𝑠, 𝑓), based on the state of 𝑐 𝑓 , and
each container’s priority, executes 𝑟 result in Warm, Late-
Warm, Cold Start or Relay. Initially, the memory for caching
containers is empty (Line 2). At any time 𝑇 , the container
states are updated, and it is checked if all buffered requests
for 𝑓 on 𝑠 can be executed (Lines 6 to 11). When a new request
𝑟 := (𝑠, 𝑓) for function 𝑓 arrives at 𝑠, the state of container 𝑐 𝑓
on 𝑠 is checked. If the state is INITED, i.e., the state of 𝑐 𝑓 is
initialized or executing, it is a Warm start (Line 14). If 𝑐 𝑓 is
still initializing, it is a Late-Warm (Line 16). When 𝑐 𝑓 does not
exist on 𝑠, according to the result obtained by the Admission
Policy, determine whether to initialize 𝑐 𝑓 on 𝑠 or relay 𝑟 to
another edge server 𝑠′. The details of the Admission Policy
are in Alg. 3. If the result returned by Admission(𝑠, 𝑓) is 𝑠,
and there is insufficient memory to start a new container, the
lowest priority container(s) are terminated to release memory
(Line 21 to 23). The priority of each container is decreased
by 𝑝𝑚𝑖𝑛, i.e., decrease the priorities of the containers cached
in memory but not currently requested (Line 24). Then 𝑐 𝑓 is
initialized on 𝑠, which is a Cold Start (Lines 26 to 28). If
Admission(𝑠, 𝑓) returns 𝑠′, then relay 𝑟 to 𝑠′(Lines 29 to 30).

B. Priority

In the online container caching problem on edge servers,
since containers have varied cold start latency, execution time,
and memory footprints, it is crucial to evaluate how caching
different containers impacts the total latency quantitatively.
In OnCoLa, we address this by assigning a priority 𝑝𝑐 𝑓 to
each container 𝑐 𝑓 to indicate its cost-effectiveness, represented
as the ratio of latency reductions to memory footprint. The
intuition behind the priority is OnCoLa prefers to cache those

Algorithm 1: OnCoLa
1 Input Request 𝑟 := (𝑠, 𝑓), Priority 𝑝𝑐 𝑓 , 𝑧 𝑓 = 𝑧

𝑒
𝑓

;
2 C ← ∅, C represents the containers cached in the

memory of 𝑠;
3 Initializing containers CInit ← ∅, (𝑠, 𝑐 𝑓 , 𝑡) ∈ CInit

means container 𝑐 𝑓 will be fully initialized on 𝑠 at
time 𝑡;

4 Timer 𝑇 ← 0;
5 while True do
6 for (𝑠, 𝑐 𝑓 , 𝑡) ∈ CInit do
7 if 𝑡 <= 𝑇 then
8 if 𝑐 𝑓 .state = INITING then
9 𝑐 𝑓 .state← INITED;

10 C ← C ∪ {𝑐 𝑓 };
11 Serve all the buffered requests for 𝑓 on 𝑠;

12 while new request 𝑟 := (𝑠, 𝑓) for function 𝑓 on 𝑠
arrive at 𝑇 do

13 if 𝑐 𝑓 .state = INITED then // Warm
14 Execute 𝑓 in 𝑐 𝑓 on 𝑠 with latency 𝑡𝑒

𝑓
;

15 if 𝑐 𝑓 .state = INITING then // Late-Warm
16 Execute 𝑓 in 𝑐 𝑓 on 𝑠 at time 𝑡 with latency

𝑡 − 𝑇 + 𝑡𝑒
𝑓
;

17 if 𝑐 𝑓 .state = OUT then
18 if Admission(𝑠, 𝑓)==𝑠 then
19 while remain size of 𝑠 < 𝑧 𝑓 do
20 if 𝑝𝑐 𝑓 ′ is the lowest priority then
21 𝑝𝑚𝑖𝑛 = 𝑝𝑐 𝑓 ′ ;
22 Terminate 𝑐 𝑓 ′ on 𝑠, C \ {𝑐 𝑓 ′ };
23 𝑐 𝑓 ′state

← OUT;

24 For container 𝑐 𝑓 ∈ C, 𝑝𝑐 𝑓 = 𝑝𝑐 𝑓 − 𝑝𝑚𝑖𝑛;
25 𝑝𝑚𝑖𝑛 ← 0;
26 𝑐 𝑓 .state← INITING// ColdStart;
27 CInit ← CInit ∪ {(𝑠, 𝑐 𝑓 , 𝑇 + 𝑡𝑐𝑓)};
28 Initializing 𝑐 𝑓 on 𝑠 with 𝑡𝑒

𝑓
+ 𝑡𝑐

𝑓
;

29 else // Admission(𝑠, 𝑓) returns 𝑠′

30 Relay 𝑟 := (𝑠, 𝑓) to 𝑠′ with latency
𝑡𝑒
𝑓
+ 𝑡𝑟𝑒;

31 UpdatePri(𝑠, 𝑓);
32 𝑇 ← 𝑇 + 1;

containers that offer greater latency reduction per unit of
memory used in memory. The priority of the container not in
memory is 0. When faced with memory insufficient, OnCoLa
terminates the container with the lowest priority, allowing for
greater latency reduction with less memory use. The method
to calculate 𝑝𝑐 𝑓 is detailed in Eqn. 2, incorporates estimates
of latency reduction and memory footprint as the numerator
and denominator, respectively.

As shown in Eqn. 2, the numerator estimates the latency re-
duction from caching 𝑐 𝑓 by using 𝛾, 𝑡𝑐

𝑓
2 and 𝑐 𝑓 .AvgLate. 𝑡𝑐

𝑓
2,

a simplified term representing the potential maximum latency

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

savings derived from the worst-case scenario considering Late-
Warm effects, and 𝑐 𝑓 .AvgLate is the dynamically calculated
average latency actually observed during previous cold starts
for 𝑐 𝑓 , which accounts for variable latencies and non-worst-
case request patterns. This combination aims to provide a more
robust estimate than using either term alone. The denominator,
𝑧 𝑓 , estimates the container’s memory footprint using both
static initialized (𝑧𝑝

𝑓
) and executing size (𝑧𝑒

𝑓
), as a weighted

average (𝑧 𝑓 = 𝑅run · 𝑧𝑒𝑓 + max(1 − 𝑅run, 0) · 𝑧𝑝𝑓) reflecting the
proportion of time (𝑅run) spent executing. The rationale for
calculating these estimations is detailed as follows.

𝑝𝑐 𝑓 =
(1 − 𝛾) · 𝑡𝑐

𝑓
2 + 𝛾 · 𝑐 𝑓 .AvgLate

𝑧 𝑓
. (2)

𝑡𝑐
𝑓
2: Before the container 𝑐 𝑓 is fully initialized, requests for

function 𝑓 result in Late-Warm instead of Warm Start, with
a maximum waiting time of 𝑡𝑐

𝑓
. So, for a Cold Start, in the

worst case, if 𝑡𝑐
𝑓

requests for 𝑓 within the next 𝑡𝑐
𝑓

time, the
total latency is (𝑡𝑐

𝑓
+1)𝑡𝑐

𝑓
/2. This means that if 𝑐 𝑓 is cached in

memory, the maximum latency reduction could be (𝑡𝑐
𝑓
+1)𝑡𝑐

𝑓
/2.

For simplicity, we use 𝑡𝑐
𝑓
2 to estimate the latency reduction for

caching 𝑐 𝑓 in memory.
𝑐 𝑓 .AvgLate: As Fig. 3 shows, the cold latency 𝑡𝑐

𝑓
varies,

and due to the skewed popularity of function requests, not all
requests experience the worst case. Hence, using only 𝑡𝑐

𝑓
2 to

estimate the latency reduction for caching 𝑐 𝑓 in memory is
not appropriate. We calculate 𝑐 𝑓 .AvgLate in Alg. 2 (Lines 3
to 8), to represent the average latency caused by a cold start
of 𝑐 𝑓 during online function request processing. This value is
based on the actual latency observed during online execution
rather than a fixed value. While 𝑡𝑐

𝑓
2 reflects the worst case, to

incorporate both worst case and online execution, we compute
𝑐 𝑓 .cost = (1 − 𝛾) · 𝑡𝑐

𝑓
2 + 𝛾 · 𝑐 𝑓 .AvgLate as the estimation of

latency reduction of caching 𝑐 𝑓 in memory, using 𝛾 to balance
between the two methods.
𝑧 𝑓 : We use 𝑧 𝑓 to estimate the memory footprint of con-

tainer 𝑐 𝑓 . When a container is initialized but not executing,
its memory footprint 𝑧𝑝

𝑓
is the minimum required to store

its virtual environment configuration and metadata. When a
container is executing, its memory footprint 𝑧𝑒

𝑓
depends on the

function code running inside. Our experiments on Nano show
that the difference between 𝑧𝑒

𝑓
and 𝑧𝑝

𝑓
can be up to 100×, as

Table II shows. Therefore, it is not appropriate to use 𝑧𝑒
𝑓

or
𝑧
𝑝

𝑓
alone as the memory footprint of 𝑐 𝑓 , but instead, we use

𝑧 𝑓 . Specifically, 𝑧 𝑓 = 𝑅run · 𝑧𝑒𝑓 + max(1 − 𝑅run, 0) · 𝑧𝑝𝑓 . Here,
𝑅run represents the proportion of time that 𝑐 𝑓 has been in the
executing state since it was fully initialized.4

C. Container Admission Policy

For request 𝑟 := (𝑠, 𝑓), when there is no initialized container
𝑐 𝑓 on 𝑠, it is a problem whether to initialize 𝑐 𝑓 on 𝑠 or relay 𝑟
to another edge server. For this, as part of OnCoLa, we design
an admission policy to decide whether to admit initializing 𝑐 𝑓
on 𝑠. Alg. 3 shows the details of the admission policy. In

4𝑅run can exceed 1 when a container in the executing state processes
multiple function requests for the same function by forking new processes,
such as “fork fprocess” in OpenFaaS [33].

Algorithm 2: UpdatePri

1 Input Edge Server 𝑠, function 𝑓

2 if 𝑐 𝑓 .state = OUT then
3 𝑐 𝑓 .cumLate← 𝑐 𝑓 .cumLate + 𝑡 𝑓𝑐 ;
4 𝑐 𝑓 .numLate← 𝑐 𝑓 .numLate + 1;

5 if 𝑐 𝑓 .state = INITING then
6 𝑐 𝑓 .cumLate←

Total Late-Warm latency of all buffered requests;
7 𝑐 𝑓 .numLate← 𝑐 𝑓 .numLate + 1;

8 𝑐 𝑓 .AvgLate =
𝑐 𝑓 .cumLate
𝑐 𝑓 .numLate

;

9 𝑐 𝑓 .cost← (1 − 𝛾) · 𝑡𝑐
𝑓
2 + 𝛾 · 𝑐 𝑓 .AvgLate;

10 𝑅𝑟𝑢𝑛 =
Total time of 𝑐 𝑓 executing 𝑓

Duration since 𝑐 𝑓 initialized
;

11 𝑧 𝑓 = 𝑅𝑟𝑢𝑛 · 𝑧𝑒𝑓 +max(1 − 𝑅𝑟𝑢𝑛, 0) · 𝑧𝑝𝑓 ;

12 𝑝𝑐 𝑓 =
𝑐 𝑓 .cost
𝑧 𝑓

;

Alg. 3, returning 𝑠 means admitting the initialization of 𝑐 𝑓
on 𝑠, and returning 𝑠′ means relaying request 𝑟 to another edge
server. First, if there is no already initialized 𝑐 𝑓 on any servers,
obviously, initializing 𝑐 𝑓 on 𝑠 is the only choice, Alg. 3 returns
𝑠 (Line 8). If there is one already initialized 𝑐 𝑓 on other
servers, the decision whether to initialize 𝑐 𝑓 on 𝑠 (Alg. 3
returns 𝑠) or relay 𝑟 to another edge server (Alg. 3 returns
𝑠′) is based on the comparison between 𝑝

𝑓
𝑐 and max(0,𝑡 𝑓𝑐 −𝑡𝑟𝑒)

𝑧𝑒
𝑓

.

Here, 𝑝 𝑓𝑐 is the priority of container 𝑐 𝑓 on edge server 𝑠, 𝑡 𝑓𝑐
is the cold latency for initializing 𝑐 𝑓 , 𝑡𝑟𝑒 is the relay latency,
and 𝑧𝑒

𝑓
is the memory footprint when 𝑐 𝑓 is in the executing

state. That is, we use max(0,𝑡 𝑓𝑐 −𝑡𝑟𝑒)
𝑧𝑒
𝑓

to indicate the “priority” of

relaying 𝑟 to another edge server. If 𝑝 𝑓𝑐 ≤ max(0,𝑡 𝑓𝑐 −𝑡𝑟𝑒)
𝑧𝑒
𝑓

, then
return 𝑠′, otherwise, it returns 𝑠, admitting the initialization of
𝑐 𝑓 on 𝑠. It is worth noting that if the container 𝑐 𝑓 has never
been initialized on 𝑠, its priority is 0.

Algorithm 3: Admission

1 Input Edge Server 𝑠, function 𝑓

Output: Edge Server
2 if there is a server 𝑠′ has 𝑐 𝑓 then
3 if 𝑝𝑐 𝑓 ≤

max(0,𝑡 𝑓𝑐 −𝑡𝑟𝑒)
𝑧𝑒
𝑓

then
4 return 𝑠′

5 else
6 return 𝑠

7 else
8 return 𝑠

D. Memory Adjustment

As a component of OnCoLa, we propose a conservative
memory adjustment method to prevent sudden increases in
𝑡𝑒
𝑓
, 𝑡𝑐
𝑓
, and request failures. This method comprises two com-

ponents: profiling memory thresholds for different servers, and

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

enabling memory growth on servers experiencing dense request
arrivals to prevent overly conservative memory thresholds.
Specifically, we profile the memory usage percentage 𝑀th of
different servers during sudden increases, defined as more than
a 20% growth in 𝑡𝑒

𝑓
, 𝑡𝑐
𝑓
, or request failures. We set the memory

size 𝐾𝑎
𝑖

for caching containers on server 𝑠𝑖 as 𝐾𝑖 · 𝑀th. Here,
𝑀th is referred to as the initial memory threshold. To adjust
the memory size online, we maintain a ghost list [34]. When
container 𝑐 𝑓 on server 𝑠 is terminated, we add 𝑓 to the ghost
list (without keeping 𝑐 𝑓 in memory). If 𝑟 = (𝑠𝑖 , 𝑓) re-arrives
within the cold start latency 𝑡𝑐

𝑓
and before this, there have

been no sudden increases in 𝑡𝑒
𝑓
, 𝑡𝑐

𝑓
, and request failures, we

increase 𝐾𝑎
𝑖

by 𝑧𝑒
𝑓

if 𝐾𝑎
𝑖
+ 𝑧𝑒

𝑓
≤ 𝐾𝑖 , we call it memory growth.

E. Theoretical Analysis

Lemma 1. OnCoLa is 𝑂 (𝐾)-competitive for container
caching without Late-Warm.

Proof. We use the potential function method [35] to prove this
Lemma. OPT is the optimal algorithm. We define the potential
function as follows:

Φ = (𝐾 − 1) ·
∑︁

𝑐 𝑓 ∈Mem
𝑝𝑐 𝑓 + 𝐾 ·

∑︁
𝑐 𝑓 ∈OptMem

𝑝𝑖𝑛𝑖𝑡𝑐 𝑓
− 𝑝𝑐 𝑓

Here Mem and OptMem indicate the memories of OnCoLa
and OPT, respectively. For containers not in memory, 𝑝𝑐 𝑓 = 0,
and 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

is the priority of 𝑐 𝑓 when it starts cold start. Initially,
Φ is zero, and finally, Φ ≥ 0, satisfying the requirements of a
potential function. For each request, we have:
• If OnCoLa initializes a container with 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

, Φ decreases
by at least 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

.
• If OPT initializes a container with 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

, Φ increases by at
most 𝐾 · 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

.
• Otherwise, Φ does not increase.

These facts imply that the cost incurred by OnCoLa is
bounded by 𝐾 times the cost incurred by OPT.

Next, we analyze in detail the impact of different cases on
Φ after receiving one request.
• OPT terminates a container 𝑐 𝑓 : since 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

− 𝑝𝑐 𝑓 ≥ 0, Φ

does not increase.
• OPT initializes a container 𝑐 𝑓 : OPT pays 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

. Since 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓
≥

0, Φ increases by at most 𝐾 · 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓
.

• OnCoLa reduces the priority for all containers in Mem:
Since the decrease of a given priority 𝑝𝑐 𝑓 is 𝑝𝑚𝑖𝑛, the
decrease in Φ is 𝑝𝑚𝑖𝑛 · ((𝐾−1) ·𝑛Mem−𝐾 ·𝑛Mem∩OptMem). We
use 𝑛 to denote the number of containers in memory. When
this case occurs, it indicates that there is not enough memory
available in Mem to initialize 𝑐 𝑓 . And we can assume
that 𝑐 𝑓 has already been initialized in OptMem. Therefore,
Mem∩OptMem ≠ Mem and 𝑛Mem−𝑛Mem∩OptMem ≥ 1. Thus,
the decrease in Φ is at least 𝑝𝑚𝑖𝑛 ·(𝐾 ·(𝑛Mem−𝑛Mem∩OptMem)−
𝑛Mem). Since 𝑛Mem−𝑛Mem∩OptMem ≥ 1, and the memory size
𝐾 ≥ 𝑛Mem, Φ decreases by at least 0.

• OnCoLa terminates a container 𝑐 𝑓 : Since the terminated
container has the least priority 𝑝𝑚𝑖𝑛, Φ does not increase.

• OnCoLa realying the request from 𝑠 to 𝑠′: Φ is unchanged.
• OnCoLa initializes the request container 𝑐 𝑓 and sets 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

:
The cost of this step is 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

. This container was not in Mem

before, and we assume it has been initialized in OptMem,
Φ decreases by −(𝐾 − 1)𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

+ 𝐾𝑝𝑖𝑛𝑖𝑡𝑐 𝑓
= 𝑝𝑖𝑛𝑖𝑡𝑐 𝑓

.

Thus, the cost incurred by OnCoLa is bounded by 𝐾 times
the cost incurred by OPT, OnCoLa is 𝑂 (𝐾) - competitive for
container caching without Late-Warm. □

Theorem 2. OnCoLa is 𝑂 (𝑇𝑐𝐾)-competitive for container
caching with Late-Warm.

Proof. We define some notations for this proof. Let ALG(𝑡𝑐
𝑓
)

and OPT(𝑡𝑐
𝑓
) be the total latency of OnCoLa and the offline

optimal in the online container caching model with Late-
Warm. Let MALG(𝑡𝑐

𝑓
) and MOPT(𝑡𝑐

𝑓
) be the total cost of

the online algorithm MALG and the offline optimal of online
container caching on multiple edge servers, where MALG
is 𝑐-competitive and 𝑡𝑐

𝑓
is the cost to start 𝑐 𝑓 . We have

MALG(𝑡𝑐
𝑓
) ≤ 𝑐 ·MOPT(𝑡𝑐

𝑓
). In the proof, we use 𝑡𝑐 to present

𝑡𝑐
𝑓

and 𝑡𝑒 to present 𝑡𝑒
𝑓
.

1. ALG(𝑡𝑐) ≤ MALG(𝑡2𝑐).
We define the request sequence of a function as all requests

to 𝑓 from the cold start of 𝑐 𝑓 to the next cold start or a
relaying for 𝑓 . Each request sequence of 𝑓 has one cold start
of 𝑐 𝑓 and zero or more Late-Warm of 𝑓 . Each initialization
of 𝑓 causes at most 𝑡𝑐 − 1 Late-Warm, so the initialization
latency of each request sequence of 𝑓 of ALG(𝑡𝑐) is at most
𝑡𝑐 · (𝑡𝑐+1)

2 . The initialization cost of each request sequence of 𝑓
of MALG(𝑡2𝑐) is 𝑡2𝑐. For each relaying of 𝑓 , the latency of 𝑓
in OnCoLa is 𝑡𝑟𝑒 + 𝑡𝑒, and the cost of 𝑓 in MALG is 𝑡𝑟𝑒 + 𝑡𝑒.
Thus, ALG(𝑡𝑐) ≤ MALG(𝑡2𝑐).

2. MOPT(𝑡2𝑐) ≤ 𝑇𝑐 ·MOPT(𝑡𝑐).
In the model of online container caching on multiple edge

servers, let S1 and S2 request the same functions, with ini-
tialize costs (𝑤1, 𝑤2, . . . , 𝑤𝑛) and (𝛼𝑤1, 𝛼𝑤2, . . . , 𝛼𝑤𝑛) in S1
and S2. Then MOPT(S1) = 𝛼·MOPT(S2). If (𝑤1, 𝑤2, . . . , 𝑤𝑛)
and (𝑤′1, 𝑤

′
2, . . . , 𝑤

′
𝑛) are the cold start costs in S1 and S2,

and 𝑤𝑖 ≤ 𝑤′
𝑖

for all 𝑖, then MOPT(S1) ≤ MOPT(S2). So,
MOPT(𝑡2𝑐) ≤ 𝑇𝑐 ·MOPT(𝑡𝑐), 𝑇𝑐 = max 𝑡𝑐.

3. MOPT(𝑡𝑐) ≤ OPT(𝑡𝑐). We set B as an algorithm that
meets the following conditions: Firstly, B and OPT have the
same main structures such as container terminal decision.
Secondly, B and OPT differ only in how they compute total
latency. For the 𝑗-th request of function 𝑓𝑖 , we assume the
time slot when this request arrives is 𝑇𝑖, 𝑗 . Besides, we define
the increase of the total latency caused by the 𝑗-th request
of function 𝑓𝑖 in OPT be OPT𝑖, 𝑗 and define the increase
of the total latency caused by this request in B be B𝑖, 𝑗 .
If the outcome of the 𝑗-th request of 𝑓𝑖 is warm start,
B𝑖, 𝑗 = OPT𝑖, 𝑗 = 𝑡𝑒. If the outcome of the 𝑗-th request of
𝑓𝑖 is cold start, B𝑖, 𝑗 = OPT𝑖, 𝑗 = 𝑡𝑐 + 𝑡𝑒. If the outcome of
the 𝑗-th request of 𝑓𝑖 is relay, B𝑖, 𝑗 = OPT𝑖, 𝑗 = 𝑡𝑟𝑒 + 𝑡𝑒. If
the outcome of the 𝑗-th request of 𝑓𝑖 is Late-Warm, B𝑖, 𝑗 is
always 𝑡𝑒 and 𝑡𝑒 < OPT𝑖, 𝑗 < 𝑡𝑒 + 𝑡𝑐. Thus, for any outcome,
B𝑖, 𝑗 is always less than or equal to OPT𝑖, 𝑗 , for any 𝑖, 𝑗 . We
define B(𝑡𝑐) as the total latency of algorithm B. According to
the above definition of B, B(𝑡𝑐) ≤ OPT(𝑡𝑐). Besides, we find
B computes the total latency in the same way as algorithms
in the model without Late-Wram. The model with Late-Warm
and the model without Late-Warm only differ in the method

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

of how they compute the total latency. So the solution of
B is a feasible solution in the model without Late-Warm.
Then, as MOPT(𝑡𝑐) is the total latency of the offline opti-
mal solution of online container caching without Late-Warm,
MOPT(𝑡𝑐) ≤ B(𝑡𝑐). Thus, MOPT(𝑡𝑐) ≤ OPT(𝑡𝑐). Thus,
ALG(𝑡𝑐) ≤ MALG(𝑡2𝑐) ≤ 𝑐 ·MOPT(𝑡2𝑐) ≤ 𝑇𝑐 · 𝑐 ·MOPT(𝑡𝑐) ≤
𝑇𝑐 · 𝑐 · OPT(𝑡𝑐). i.e., ALG(𝑡𝑐) ≤ 𝑇𝑐 · 𝑐 · OPT(𝑡𝑐). Since
the competitive ratio of OnCoLa on the model without Late-
Warm is 𝑂 (𝐾), OnCoLa is 𝑂 (𝑇𝑐𝐾)-competitive for container
caching with Late-Warm. □

V. EVALUATION

We evaluate the performance of OnCoLa using the AliFC
Trace [7], and the Azure Trace [21]. Compared with GD, the
state-of-the-art algorithm that deals with container caching
in serverless computing, OnCoLa can reduce the latency
by up to 23.33%. Compared with LLB, the algorithm that
supports relaying requests to other servers, it improves by
22.48%, under the default setting. Through sensitivity analysis
on the number of edge servers, total memory size, initial
memory threshold, 𝛾, and relay latency, OnCoLa consistently
outperforms baselines.

A. Methodology

Metrics. In this section, the metrics used to evaluate the
performance of algorithms is the total latency incurred of all
requests, including the execution time and cold start latency.
Memory Size. The total memory size of edge servers in
OnCoLa is the sum of the sizes of containers corresponding
to the most active functions, similar to [36]. The default
configuration consists of 200 edge servers, and their total
memory size is calculated as the sum of the initialized memory
footprint of the top 40% active functions’ containers. By
default, 𝛾 is 0.6, relay latency is 200 ms, and the memory
threshold is 60% for each server. To handle varying memory
sizes among edge servers, we allocate the total memory size
to 𝑁 edge servers using Eqn. 3. Edge servers are divided into
5 types numbered 𝑖, where servers with the same 𝑖%𝑁 have
the same memory size (𝑁 = 200).

𝐾𝑖 = (𝑖%𝑁 + 1)
⌈

Total Memory Size

(15⌊(𝑁/5)⌋ + (1+𝑁%5) (𝑁%5)
2)

⌉
. (3)

Workloads. Since both AliFC trace and Azure trace originate
from serverless computing and lack edge server information
for the requests, we use the Machine ID from Google’s
trace [37], and use Machine ID modular 𝑁 as the edge server.
The two traces differ in average request locality and average
Late-Warm intensity [1]. With 200 servers, the AliFC trace has
an average request locality of 0.161 and a Late-Warm intensity
of 0.159, while the Azure trace has a request locality of 0.096
and a Late-Warm intensity of 0.485.
Baselines. We compare the performance of OnCoLa with
LRU [38], TTL [39], LRU-MAD [36], GD [30] and LLB [40].
To verify the effectiveness of OnCoLa in handling relay
latency, we also include OnCoLa# [1] as a baseline.5

5OnCoLa# does not take the relay latency into account, when 𝑐 𝑓 does not
exist on 𝑠, if there is an edge server 𝑠′ that has 𝑐 𝑓 and 𝑐 𝑓 with the lowest
priority on 𝑠, 𝑟 is relayed to 𝑠′ [1].

B. Experiment Results

Overall performance. We evaluate OnCoLa’s overall perfor-
mance under default settings and compare it to baselines. Ex-
perimental results appear in Fig. 7, where the total latency of
each algorithm is normalized to LRU (= 1.0). The experiments
in AliFC show that among all baselines except OnCoLa#,
LLB performs the best, with its improvement attributed to
relaying requests to other servers. Compared to LLB, OnCoLa
improves performance by 22.48%, employing priorities bet-
ter suited for multi-server environments with Late-Warm.
Furthermore, compared to GD, OnCoLa achieves a 23.33%
latency reduction by leveraging inter-server cooperation and
priorities tailored for serverless edge computing. Compared
to OnCoLa#, OnCoLa utilizes its admission policy to handle
relay latency, reducing latency by 4.21% in the AliFC trace and
2.41% in the Azure trace, respectively, under default settings.

LR
U

LR
U-

M
AD LL

B

GD TT
L

On
Co

La
#

On
Co

La

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
ot

al
 L

at
en

cy

(a) AliFC

LR
U

LR
U-

M
AD LL

B

GD TT
L

On
Co

La
#

On
Co

La

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
ot

al
 L

at
en

cy

(b) Azure
Fig. 7. Overall performance.

Ingredient of Latency. Fig. 8 shows the ratios of Cold
Start, Relay, Late-Warm, and Warm Start for each algorithm.
Compared to OnCoLa#, OnCoLa demonstrates a reduction
of 33.5% and 32.55% in Relay Ratio in the AliFC and
Azure traces, respectively. This is attributed to OnCoLa’s
consideration of the relationship between relay latency and
cold latency in Alg. 3. When relay latency approaches cold
latency, OnCoLa may opt to initialize a container at the local
server instead of relaying the request to another server with
relay latency, a factor not considered by OnCoLa#.

Cold Relay Late-Warm Warm

LR
U

LR
U-
M
AD LL
B

GD TT
L

On
Co
La

#
On
Co
La

0

20

40

60

80

100

R
at
io
(%
)

(a) AliFC

LR
U

LR
U-
M
AD LL
B

GD TT
L

On
Co
La

#
On
Co
La

0

20

40

60

80

100

R
at
io
(%
)

(b) Azure
Fig. 8. Ratio of Cold-Start, Relay, Late-Warm, and Warm.

C. Sensitivity Analysis

We use the latency improvement relative to LRU to measure
the performance of the algorithm, a higher latency improve-
ment means better performance.

Latency Improvement of A =
Latency(LRU) − Latency(A)

Latency(LRU)
.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Total Memory Size. To investigate the impact of the total
memory size, we vary it from 10% to 90% and display
the results in Fig. 9. When the total memory size is small,
OnCoLa exhibits higher improvement than other baselines.
However, with sufficient memory to cache frequent contain-
ers, all algorithms’ performances converged, especially in
the AliFC trace. Compared to OnCoLa#, OnCoLa improves
performance by 0.79% to 7.4% in the AliFC trace, and by
1.58% to 6.83% in the Azure trace.

TTL
LRU-MAD

GD
LLB

OnCoLa#

OnCoLa

20 40 60 80
Total Memory of Edge Servers (%)

0

10

20

30

40

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) AliFC

20 40 60 80
Total Memory of Edge Servers (%)

0

5

10

15

20

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(b) Azure
Fig. 9. Impact of total memory size.

Number of Edge Servers. Fig.10 illustrates the impact of
varying the number of edge servers. OnCoLa consistently
demonstrates superior performance across a range of server
counts, from 100 to 1000. In this experiment, compared to
OnCoLa#, OnCoLa’s performance improvement ranged from
1.14% to 9.27% across the two traces. With a fixed total
memory size, increasing the number of servers results in less
memory per server. In the AliFC trace, OnCoLa leverages re-
quest relaying among multiple servers, enhancing performance
as server numbers increase. Conversely, in the Azure trace,
performance declines due to the reduced per-server memory
capacity, which limits container caching capabilities.

TTL
LRU-MAD

GD
LLB

OnCoLa#

OnCoLa

1 2 3 4 5 6 7 8 9 10
of Edge Servers (×100)

0

10

20

30

40

50

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) AliFC

1 2 3 4 5 6 7 8 9 10
of Edge Servers (×100)

0

5

10

15

20

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(b) Azure
Fig. 10. Impact of the number of edge servers.

Parameter 𝛾. We vary 𝛾 from 0 to 1, as shown in Fig. 11. The
performance of OnCoLa fluctuates with changes in 𝛾 across
both traces, peaking at 𝛾 = 0.6. In comparison, the variation
of 𝛾 has a more pronounced effect in the Azure trace than in
the AliFC trace. This is because 𝛾 adjusts the estimation of
latency reduction during online execution from a cold start.
The smaller impact of 𝛾 in the AliFC trace is reasonable,
as the average Late-Warm intensity is lower than that in the
Azure trace. Changes in 𝛾 affect the priority (𝑝 𝑓𝑐) used in the
admission policy. As 𝛾 varies from 0 to 1, in the Azure trace,
OnCoLa achieves up to 2.96% performance improvement over
OnCoLa#.

TTL
LRU-MAD

GD
LLB

OnCoLa#

OnCoLa

0 0.15 0.3 0.45 0.6 0.75 0.9 1
γ

0

10

20

30

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) AliFC

0 0.15 0.3 0.45 0.6 0.75 0.9 1
γ

0

5

10

15

20

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(b) Azure
Fig. 11. Impact of 𝛾.

Memory Adjustment. To assess the effectiveness of the
memory adjustment method and demonstrate the impact of
varying initial memory threshold, we vary threshold from 40%
to 100%. We also assess the impact of memory growth by
comparing OnCoLa with OnCoLa∗, which lacks the memory
growth feature. This evaluation involved setting LRU’s mem-
ory threshold within the same range. As shown in Fig.12,
OnCoLa’s performance starts to decline when the threshold
exceeds 80%, indicating that limiting the initial memory
threshold is effective. Fig.12(a) shows that the impact of
memory growth is more pronounced in the AliFC trace due
to its higher average request locality compared to the Azure
trace, making memory growth more likely to occur.

OnCoLa OnCoLa *

40 60 80 100
Memory Threshold of Servers (%)

15

20

25

30

35

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) AliFC

40 60 80 100
Memory Threshold of Servers (%)

7.5

10.0

12.5

15.0

17.5

20.0

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(b) Azure
Fig. 12. Impact of memory adjustment.

TTL
LRU-MAD

GD
LLB

OnCoLa#

OnCoLa

0 2 10 50 100
Relay Latency (×100ms)

0

10

20

30

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(a) AliFC

0 2 10 50 100
Relay Latency (×100ms)

0

5

10

15

20

La
te

nc
y

Im
pr

ov
em

en
t

R
el

at
iv

e
to

 L
R

U
(%

)

(b) Azure
Fig. 13. Impact of relay latency.

Relay Latency. To evaluate the effectiveness of the admission
policy and explore the impact of varying relay latency, we
adjust the relay latency from 0 to 10000 ms. Since LRU,
LRU-MAD, and GD do not involve relaying requests to other
servers, their performance remains constant. For OnCoLa,
OnCoLa#, and LLB, the performance gain from relaying
requests decreases as relay latency increases. When relay
latency is 0 ms, OnCoLa achieves the same performance

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

as OnCoLa#. As relay latency increases from 200 to 10000
ms, OnCoLa demonstrates performance improvements over
OnCoLa#. Specifically, for the AliFC trace, the improvements
are 4.21%, 2.58%, 10.94%, and 13.31%, while for the Azure
trace, the gains are 2.41%, 2.81%, 4.77%, and 5.4%. Due
to the relay latency consideration of OnCoLa, it outperforms
OnCoLa#, particularly at larger relay latencies.

VI. IMPLEMENTATION ON REAL EDGE DEVICES

In this section, we evaluate OnCoLa on an edge cluster with
PI4B and Nano, using three workloads of 10 common IoT data
processing functions. OnCoLa reduces latency by 21.38% and
cuts the request failure rate by up to 2.3× compared to the
fixed-duration container caching policy.

A. Experimental Setup

Device and Platform. Our experiments are conducted on an
edge cluster of 4 PI4B and 4 Nano, with another PI4B as
the Relayer. Each PI4B has 1GB RAM, and each Nano has
4GB RAM, and a GPU. By default, the swap is turned off
on all devices. We deploy OpenFaaS on Nano and faasd on
PI4B, both using containerd as the container runtime. We
enable GPU supported in OpenFaaS by mounting the nvidia-
container-runtime on Nano [41]. The average relay latency
among devices is 16.96 milliseconds.
Functions. In this experiment, as shown in Table II, we use
10 commonly used functions for IoT data processing as the
composition of the workload. Due to the length constraints,
Table II only displays the information on Nano. Moreover,
terminating executing containers is not permitted, if all edge
devices’ memory is used by executing containers, requests
for new functions will be marked as failed requests due to
insufficient memory.

TABLE II
FUNCTIONS USED IN EXPERIMENT

𝑓 𝑡𝑐
𝑓

𝑡𝑒
𝑓

𝑧
𝑝

𝑓
𝑧𝑒
𝑓

Description
MM 2.13 1.53 25 104 Matrix Multiplication.
FFT 1.62 0.67 25 78 Fast Fourier Transform.
STT 1.32 1.12 22 58 Speech to Text.
AD 0.83 0.63 10 63 Audio Denoising.

RSA 1.66 1.34 11 58 Data Encryption.
PCA 1.23 2.81 13 72 Dimensionality Reduction.
RE 1.35 1.81 13 56 Resizing images.
IC 2.75 6.45 10 1060 Image Classification.

Node 1.32 0.03 19 21 OpenFaaS function.
Curl 1.41 0.20 6 8 OpenFaaS function.

𝑓 : function, 𝑡𝑐
𝑓

: cold start latency (s), 𝑡𝑒
𝑓

: execution time (s), 𝑧𝑝
𝑓

: initialized memory
footprint (MB), 𝑧𝑒

𝑓
: executing memory footprint (MB). 𝑡𝑐

𝑓
and 𝑡𝑒

𝑓
are under 60%

memory usage.

Workload. To evaluate the performance of OnCoLa under dif-
ferent workload types, we generate 3 types of workloads, with
each workload containing 80, 000 function requests across the
10 functions and 8 devices. The IC function requests cannot
be processed on PI4B. The three workload types are:
• Low: 80% of requests are for 2 functions with small memory

footprints and short execution times (Node and Curl), while
the other 20% of requests are for the other functions. The
average inter-request interval is 0.5 seconds.
• Medium: Each function has 8000 requests, which are evenly

distributed to the 8 devices (except for IC). The average
inter-request interval is 0.5 seconds.

• High: The number of function requests is the same as
Medium. The average inter-request interval is 0.2 seconds.

B. Experimental Results
Average Latency. We compare OnCoLa (𝛾 = 0.6, the memory
threshold for PI4B and Nano is 40% and 60%, respectively)
with the widely used TTL policy (which caches the containers
for 5 minutes). And the metric is the average latency of all
successfully completed requests. As Fig. 14 shown, OnCoLa
reduces the latency by 10.16%, 21.38% and 14.75% for Low,
Medium and High workloads, respectively.

Low Medium High
Workload Type

0

20

40

60

80

100

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
at

en
cy

TTL TTL TTL
OnCoLa

OnCoLa
OnCoLa

Fig. 14. The normalized average latency under three different workloads.
The Ratio of Outcomes. Fig. 15(a) compares the ratios of
Cold, Relay, Late-Warm, Warm, and Fail for OnCoLa and
TTL across three workloads. Fail, indicating the percentage
of failed requests, rises from Low to High workload for both
methods. OnCoLa reduces the failure rate by up to 2.3×
compared to TTL. Under the Low workload, both OnCoLa
and TTL exhibit a higher Warm Start ratio. In the High
workload, with an average inter-request interval of 0.2s and
more functions with longer cold start latency, Late-Warm
ratios increase by 184.62% for OnCoLa and 76.92% for TTL,
compared to the Low workload.

Cold Relay Late-Warm Warm Fail

Low Medium High
Workload Type

0

20

40

60

80

100

R
at

io
(%

)

TTL TTL TTLOnCoLa OnCoLa OnCoLa

(a) Different type workloads

Low Medium High
Workload Type

0

20

40

60

80

100

R
at

io
(%

)

PI4B PI4B PI4BNano Nano Nano

(b) Different devices
Fig. 15. Ratio of outcomes for processing requests.

+0 +1 +2 +3 +4
Swap Memory Size (GB)

80

85

90

95

N
or

m
al

iz
ed

 A
ve

ra
ge

 L
at

en
cy

 (%
) Low Medium High

(a) Latency

Low Medium High
Workload Type

0

25

50

75

100

R
at

io
(%

)

+0 +1 +2 +3 +4 +0 +1 +2 +3 +4 +0 +1 +2 +3 +4
Cold Relay Late-Warm Warm Fail

(b) Ratio of Outcomes
Fig. 16. Impact of memory size of devices.

The Ratio of Outcomes on Different Devices. Fig. 15(b)
shows the outcome ratios on PI4B and Nano with OnCoLa.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

For the Low workload, Warm ratios are high at 55.77% (PI4B)
and 65.12% (Nano). Under the Medium workload, Nano’s Fail
ratio rises to 12% due to increased IC requests. In the High
workload, Fail reaches 22%, Late-Warm grows to 57.78%, and
Warm on PI4B drops to 0.44%.
Impact of Memory Size of Devices. To assess OnCoLa’s
scalability with memory size, we enabled swap to extend PI4B
and Nano memory from 1GB to 4GB. Results in Fig. 16
show that as swap memory increases, OnCoLa’s performance
decreases slightly but stays at least 3.88% better than TTL.
Fig. 16(b) highlights that increased swap memory raises the
Warm proportion while reducing Fail rates.

VII. RELATED WORKS

A. Serverless Edge Computing

Serverless edge computing, merges the benefits of serverless
computing, such as on-demand resource allocation and fine-
grained resource management, with edge computing’s proxim-
ity to data sources, offering reduced latency for applications
like the Internet of Things. However, the resource-limited
and heterogeneous nature of the edge introduces challenges
not typically found in cloud-based serverless environments.
Research in serverless edge computing aims to optimize
performance and resource utilization, various studies focus
on deployment [42], pricing [43], [44], scheduling [22]–
[25], resource provisioning [45], cold start mitigation [46]
and handling function dependencies [47]. While these works
address many aspects of serverless edge computing, this work
focuses on the online container caching problem for IoT data
processing within serverless edge computing. We introduce
a novel consideration of Late-Warm, alongside the practical
challenges of memory sensitivity on resource-limited devices
and request relaying between edge servers. Our proposed
algorithm, OnCoLa, aims to minimize total latency by tackling
these challenges inherent to the serverless edge environment.

B. Container Caching

Major serverless platforms like AWS and Azure use a fixed
duration caching policy [48]. FaaSCache [30] uses a Greedy-
Dual keep-alive policy considering the request frequency and
function patterns. Shahrad et al. [21] propose a practical
resource management policy for container caching and pre-
warming. Yu et al. [19] propose a layer-wise container pre-
warming and keep-alive policy to reduce cold starts. Flame
is a cache system with centralized control for optimized
cache-hit ratio and resource efficiency across clusters [49]. In
this paper, we focus on container caching in serverless edge
computing, which faces challenges from Memory Sensitivity,
Request Relaying and Late-Warm. Existing online caching
algorithms typically assume constant latency and memory
footprint, and container caching policies for powerful servers
often neglect edge-specific constraints. We introduce OnCoLa,
a novel approach that assigns a priority to each container,
effectively dealing with these three challenges all at once with
the competitive ratio.

VIII. CONCLUSION

This paper investigates the online container caching problem
in serverless edge computing. We highlight the new challenges
of designing an online caching algorithm with resource-limited
edge servers, including Late-Warm, Memory-sensitivity, and
Request Relaying. We propose an 𝑂 (𝑇𝑐𝐾)-competitive algo-
rithm, OnCoLa, to address these challenges. We implement
OnCoLa and conduct experiments on edge devices to validate
the improvement over the current policy. We conduct extensive
simulations based on real-world traces and show that OnCoLa
outperforms baselines. Serverless edge computing is still in its
early stages, we hope this work can contribute to implementing
the serverless paradigm in large-scale edge systems. The
source code is available for reference.6

REFERENCES

[1] G. Li, H. Tan, X. Zhang, C. Zhang, R. Zhou, Z. Han, and G. Chen,
“Online container caching with late-warm for iot data processing,” in
IEEE ICDE 2024, 2024, pp. 1547–1560.

[2] M. Adil, M. Attique, M. M. Jadoon, J. Ali, A. Farouk, and H. Song,
“Hopctp: a robust channel categorization data preservation scheme for
industrial healthcare internet of things,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 10, pp. 7151–7161, 2022.

[3] P. Killeen, I. Kiringa, and T. Yeap, “Unsupervised dynamic sensor
selection for iot-based predictive maintenance of a fleet of public
transport buses,” ACM Transactions on Internet of Things, vol. 3, no. 3,
pp. 1–36, 2022.

[4] J. E. Tate, “Preprocessing and golomb–rice encoding for lossless com-
pression of phasor angle data,” IEEE transactions on smart grid, vol. 7,
no. 2, pp. 718–729, 2015.

[5] M. Mazaheri, R. Ruiz, D. Giustiniano, J. Widmer, and O. Abari,
“Bringing millimeter wave technology to any iot device,” in ACM
MobiCom 2023, pp. 1–15.

[6] D. Carrizales-Espinoza, D. D. Sanchez-Gallegos, J. Gonzalez-Compean,
and J. Carretero, “Structmesh: A storage framework for serverless
computing continuum,” Future Generation Computer Systems, vol. 159,
pp. 353–369, 2024.

[7] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and
Y. Cheng, “Faasnet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute,” in USENIX ATC
2021.

[8] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[9] B. Javadi, B. Jingtao Sun, and R. Ranjan, “Serverless architecture for
edge computing.” IET, 2020.

[10] Z. Wen, Q. Chen, Q. Deng, Y. Niu, Z. Song, and F. Liu, “Combo-
func: Joint resource combination and container placement for serverless
function scaling with heterogeneous container,” IEEE Transactions on
Parallel and Distributed Systems, vol. 35, no. 11, pp. 1989 – 2005, 2024.

[11] S. Kohli, S. Kharbanda, R. Bruno, J. Carreira, and P. Fonseca,
“Pronghorn: Effective checkpoint orchestration for serverless hot-starts,”
in EuroSys 2024, pp. 298–316.

[12] Y. Fu, L. Xue, Y. Huang, A.-O. Brabete, D. Ustiugov, Y. Patel,
and L. Mai, “Serverlessllm: Low-latency serverless inference for large
language models,” in USENIX OSDI 2024, pp. 135–153.

[13] A. Szekely, A. Belay, R. Morris, and M. F. Kaashoek, “Unifying
serverless and microservice workloads with sigmaos,” in ACM SOSP
2024, pp. 385–402.

[14] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. Darlow, J. Wang,
Q. Deng, and A. Barker, “Serverless cold starts and where to find them,”
in EuroSys 2025, p. 938–953.

[15] Z. Zhang, C. Jin, and X. Jin, “Jolteon: Unleashing the promise of
serverless for serverless workflows,” in USENIX NSDI 2024.

[16] Q. Chen, J. Qian, Y. Che, Z. Lin, J. Wang, J. Zhou, L. Song, Y. Liang,
J. Wu, W. Zheng et al., “Yuanrong: A production general-purpose
serverless system for distributed applications in the cloud,” in ACM
SIGCOMM 2024, pp. 843–859.

6https://drive.google.com/drive/folders/1Fh5IDVyu66VzQUuiWwfxjkLsZQZGAyZH

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

[17] X. Yue, S. Yang, L. Zhu, S. Trajanovski, F. Li, and X. Fu, “Exploiting
wide-area resource elasticity with fine-grained orchestration for server-
less analytics,” IEEE/ACM Transactions on Networking, 2024.

[18] Q. Liu, Y. Cheng, H. Shen, A. Wang, and B. Balaji, “Concurrency-
informed orchestration for serverless functions,” in ACM ASPLOS 2025.

[19] H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang,
and S.-J. Park, “Rainbowcake: Mitigating cold-starts in serverless with
layer-wise container caching and sharing,” in ACM ASPLOS 2024.

[20] J. Stojkovic, N. Iliakopoulou, T. Xu, H. Franke, and J. Torrellas,
“Ecofaas: Rethinking the design of serverless environments for energy
efficiency,” in ACM/IEEE ISCA 2024.

[21] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in USENIX ATC 2020.

[22] X. Shang, Y. Mao, Y. Liu, Y. Huang, Z. Liu, and Y. Yang, “Online
container scheduling for data-intensive applications in serverless edge
computing,” in IEEE INFOCOM 2023, pp. 1–10.

[23] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and M. B. Chhetri,
“Faashouse: sustainable serverless edge computing through energy-
aware resource scheduling,” IEEE Transactions on Services Computing,
vol. 17, no. 4, pp. 1533–1547, 2024.

[24] F. Tütüncüoğlu, S. Jošilo, and G. Dán, “Online learning for rate-adaptive
task offloading under latency constraints in serverless edge computing,”
IEEE/ACM Transactions on Networking, vol. 31, no. 2, 2022.

[25] S. Hu, Z. Qu, B. Tang, B. Ye, G. Li, and W. Shi, “Joint service
request scheduling and container retention in serverless edge computing
for vehicle-infrastructure collaboration,” IEEE Transactions on Mobile
Computing, vol. 23, no. 6, pp. 6508–6521, 2023.

[26] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[27] N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3, pp.
371–383, 2002.

[28] H. Tan, S. H.-C. Jiang, Z. Han, L. Liu, K. Han, and Q. Zhao, “Camul:
Online caching on multiple caches with relaying and bypassing,” in
IEEE INFOCOM 2019.

[29] D. Rohatgi, “Near-optimal bounds for online caching with machine
learned advice,” in SIAM SODA 2020.

[30] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing alive
with greedy-dual caching,” in ACM ASPLOS 2021.

[31] “Use containers to build, share and run your applications,” 2024, https:
//www.docker.com/resources/what-container/.

[32] P. Manohar and J. Williams, “Lower bounds for caching with delayed
hits,” arXiv preprint arXiv:2006.00376, 2020.

[33] “of-watchdog,” 2024, https://github.com/openfaas/of-watchdog.
[34] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead

replacement cache.” in USENIX FAST 2003.
[35] S. Albers, “Brics, mini-course on competitive online algorithms,” Aarhus

University, vol. 32, 1996.
[36] N. Atre, J. Sherry, W. Wang, and D. S. Berger, “Caching with delayed

hits,” in ACM SIGCOMM 2020.
[37] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage trace,” in

Technical Report, 2011.
[38] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and

paging rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208,
1985.

[39] “Apache openwhisk,” 2024, https://openwhisk.apache.org.
[40] L. Epstein, C. Imreh, A. Levin, and J. Nagy-György, “Online file caching

with rejection penalties,” Algorithmica, vol. 71, pp. 279–306, 2015.
[41] “Nvidia container runtime,” 2024, https://developer.nvidia.com/

nvidia-container-runtime.
[42] K. Cao, M. Chen, S. Karnouskos, and S. Hu, “Reliability-aware per-

sonalized deployment of approximate computation iot applications in
serverless mobile edge computing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2024.

[43] F. Tütüncüoğlu, A. Ben-Ameur, G. Dán, A. Araldo, and T. Chahed,
“Dynamic time-of-use pricing for serverless edge computing with gen-
eralized hidden parameter markov decision processes,” in IEEE ICDCS
2024, pp. 668–679.

[44] F. Tütüncüoğlu and G. Dán, “Joint resource management and pricing
for task offloading in serverless edge computing,” IEEE Transactions
on Mobile Computing, vol. 23, no. 6, pp. 7438–7452, 2023.

[45] O. Ascigil, A. G. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras,
and G. Pavlou, “Resource provisioning and allocation in function-
as-a-service edge-clouds,” IEEE Transactions on Services Computing,
vol. 15, no. 4, pp. 2410–2424, 2021.

[46] K. Zhao, Z. Zhou, L. Jiao, S. Cai, F. Xu, and X. Chen, “Taming
serverless cold start of cloud model inference with edge computing,”
IEEE Transactions on Mobile Computing, vol. 23, no. 8, 2023.

[47] S. Deng, H. Zhao, Z. Xiang, C. Zhang, R. Jiang, Y. Li, J. Yin,
S. Dustdar, and A. Y. Zomaya, “Dependent function embedding for
distributed serverless edge computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 10, pp. 2346–2357, 2021.

[48] “Aws lambda,” 2024, https://aws.amazon.com/lambda.
[49] Y. Yang, L. Zhao, Y. Li, S. Wu, Y. Hao, Y. Ma, and K. Li, “Flame: A

centralized cache controller for serverless computing,” in ACM ASPLOS
2023, pp. 153–168.

Guopeng Li received his B.Eng. degree in Computer
Science and Technology from Central South Uni-
versity in 2020. He is currently pursuing his Ph.D
degree at University of Science and Technology of
China (USTC). His main research interests include
serverless computing, edge intelligence, LLM-based
applications, and efficient LLM systems.

Haisheng Tan (Senior Member, IEEE) received his
B.E. degree in Software Engineering and B.S. degree
in Management both from University of Science
and Technology of China (USTC) with the highest
honor. Then, he got his Ph.D. degree in computer
science at the University of Hong Kong (HKU).
He is currently a professor at USTC. His research
interests include algorithms and networking. Dr. Tan
has published over 80 papers in prestigious journals
and conferences, mainly in the areas of AIoT and
edge computing. He recently received the Best Paper

Award in WASA’19, CWSN’20, PDCAT’20, and ICAPDS’21.
Chi Zhang received his B.Eng. degree in Computer
Science and Technology from USTC with the honor
of The Talent Program in Computer and Information
Science and Technology in 2017, and got his Ph.D.
degree in Computer Science and Technology from
USTC in 2023. He is currently an associate professor
at Hefei University of Technology. His primary re-
search interests are cloud computing and algorithms.

Xuan Zhang received her B.Eng. degree in Com-
puter Science and Technology from Northwest Uni-
versity, China, in 2023. She is currently pursuing her
MS degree at University of Science and Technology
of China (USTC). Her main research interest is edge
computing and system for AI.

Zhenhua Han is a senior researcher at Microsoft
Research (Asia), Shanghai. He received B.Eng. de-
gree in electronic and information engineering from
University of Electronic Science and Technology of
China, Chengdu, in 2014, and Ph.D. degree from
the University of Hong Kong, Hong Kong. His
research interests are resource management, systems
for machine learning, and cloud computing. Many of
his works have been published in top venues such
as USENIX OSDI, ACM SOSP, and ASPLOS.

Guoliang Chen received the B.S. degree from Xi’an
Jiaotong University, Xi’an, in 1961. Since 1973,
he has been with the University of Science and
Technology of China, Hefei, a professor in computer
science. From 1981 to 1983, he was a visiting
scholar at Purdue University, West Lafayette, IN. He
has published 9 books and more than 200 research
papers. His research interests include parallel algo-
rithms, computer architectures, computer networks,
and computational intelligence. He is an academi-
cian of the Chinese Academy of Sciences.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3595965

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 20,2025 at 18:53:13 UTC from IEEE Xplore. Restrictions apply.

